Buckling Analysis of Embedded Nanosize FG Beams Based on a Refined Hyperbolic Shear Deformation Theory
Authors
Abstract:
In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thickness direction based on the power-law model. To capture small size effects, Eringen’s nonlocal elasticity theory is adopted. Employing Hamilton’s principle, the nonlocal governing equations of FG nanobeams embedded in the elastic foundation are obtained. To predict the buckling behavior of embedded FG nanobeams, the Navier-type analytical solution is applied to solve the governing equations. Numerical results demonstrate the influences of various parameters such as elastic foundation, power-law index, nonlocal parameter, and slenderness ratio on the critical buckling loads of size dependent FG nanobeams.
similar resources
A refined inverse hyperbolic shear deformation theory for bending analysis of functionally graded porous plates
The modern engineering structures require the advanced engineering materials to resist the high temperatures and to provide high stiffness. In particular the functionally graded porous materials (FGPMs) introduced are expected to have these desired properties, consequently eliminating local stress concentration and de-lamination. In the present paper, a new shear strains shape function is chose...
full textDynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory
In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs), and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT), the motion equations are derived using the energy method and Hamilton's p...
full textVibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity
In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of Nano-plate has been considered based on two different models of power function and exponential function. All equations governing on the vibration of FG Nano-plate ha...
full textdynamic buckling of embedded laminated nanocomposite plates based on sinusoidal shear deformation theory
in this study, dynamic buckling of embedded laminated nanocomposite plates is investigated. the plates are reinforced with single-walled carbon nanotubes (swcnts) where to obtain the equivalent material properties of them, mori-tanaka model is applied. based on the sinusoidal shear deformation theory (ssdt), the motion equations are derived using energy method and hamilton's principal. the...
full textBending, buckling and free vibration responses of hyperbolic shear deformable FGM beams
This study investigated bending, buckling, and free vibration responses of hyperbolic shear deformable functionally graded (FG) higher order beams. The material properties of FG beams are varied through thickness according to power law distribution; here, the FG beam was made of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the effect of shear deformation i...
full textStatic analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory
In this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. From the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...
full textMy Resources
Journal title
volume 4 issue 3
pages 140- 146
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023